Polymerization of 1-(1-Naphthyl)-1-propyne by Nb and Ta Catalysts and Polymer Properties: Effects of the 1-Naphthyl Group

Hiroaki Kouzai, Toshio Masuda,* and Toshinobu Higashimura

Department of Polymer Chemistry, Kyoto University, Kyoto 606-01

(Received August 5, 1994)

1-(1-Naphthyl)-1-propyne polymerized in the presence of NbCl₅-cocatalyst systems to give virtually selectively a new polymer $\overline{M}_{\rm w}$ ca.3×10⁵) in high yields. Catalysts based on TaCl₅ produced mixtures of the polymer and cyclotrimers. The polymer was a pale-yellow solid soluble in various organic solvents (e.g., toluene, CHCl₃), and formed a free-standing film on solution casting. The onset temperature of the weight loss of the polymer in air was ca. 340 °C, which is higher than that (280 °C) of poly(1-phenyl-1-propyne) [poly(1-PP)]. The oxygen permeability coefficient at 25 °C was 80 barrers and one order of magnitude higher than that of poly(1-PP). These results are explicable in terms of the steric effects of the 1-naphthyl group.

Disubstituted acetylenes are known to polymerize with Nb and Ta catalysts. Among them, 1-phenyl-1-propyne^{1,2)} (MeC \equiv CPh; 1-PP) forms a polymer having a weight-average molecular weight ($\overline{M}_{\rm w}$) of over 1×10^6 . The polymer is a white solid which is soluble in various organic solvents. This polymer is thermally fairly stable, as is seen from its onset temperature of the weight loss in air (T_0) being 280 °C. Its gas permeability is rather low among those of various substituted polyacetylenes.³⁾ It seems to be interesting to examine how the polymerization behavior and polymer properties would change if the phenyl group of a monomer were to be replaced by the bulky 1-naphthyl group.

The present paper deals with the polymerization of 1-(1-naphthyl)-1-propyne (1-NP) and properties of the product polymer (Chart 1). 1-NP polymerized with NbCl₅-based catalysts to give a new, high-molecular-weight polymer in excellent yields. The polymer showed a higher thermal stability and a higher gas permeability than does poly(1-PP).

Experimental

Materials. The monomer (new compound) was prepared according to Eq. 1.

$$MeC \equiv CH + I - \underbrace{\begin{array}{c} (PPh_3)_2PdCl_2 \\ \hline CuI/Ph_3P \end{array}}_{} MeC \equiv C$$

$$1-PP \qquad \qquad 1-NP$$

$$Chart 1.$$

1-(1-Naphthyl)-1-propyne: After being flushed with dry nitrogen, a 500-ml flask was charged with Et₃N (250 ml), (Ph₃P)₂PdCl₂ (1.4 g, 2.0 mmol), Ph₃P (2.1 g, 7.9 mmol), Cul (2.3 g, 11.8 mmol), and 1-iodonaphthalene (28.7 ml, 0.20 mol). Then, propyne (22.4 ml, 0.39 mol) was bubbled for 5 min into the mixture at -10° C, and the mixture was stirred for an additional 1 h at room temperature. After the completion of the reaction was confirmed by gas chromatography (GC), the Et₃N was evaporated. Et₂O (300 ml) was then added, and insoluble salts were filtered off. The solution was washed with 5% HCl and water. The organic phase was dried over anhydrous Na₂SO₄ overnight, and the Et₂O was evaporated. The product was distilled at reduced pressure; bp 100—101 °C/4 mmHg (1 mmHg=133.322 Pa), yield 84%, purity >99.9% (GC), d_4^{20} 1.008. IR (KBr) 3060 (s), 2955 (m), 2914 (s), 2219 (m, $v_{C}\equiv_C$), 1586 (s), 1437 (m), 1397 (s), 1375 (m), 1017 (s), 799 (s), and 774 (s), cm⁻¹. ¹H NMR (CDCl₃) δ =7.8—7.2 (naphthyl) and 2.1 (s, 3, Me). 13 C NMR (CDCl₃) δ =133.4, 133.1, 129.9, 128.1, $127.8, 126.3, 126.2, 126.1, 125.1, 121.7, 90.7, (MeC \equiv), 77.8$ $(\equiv CNp)$, and 4.4.

Transition-metal chlorides and organometallic cocatalysts were all commercially obtained and used without further purification. Polymerization solvents were purified by the standard methods. $^{4)}$

Procedures. Polymerizations were carried out as described elsewhere. Donomer conversions were determined by GC. The molecular weights of the polymers were determined by gel permeation chromatography (GPC; eluent, CHCl₃, polystyrene calibration) and by laser-light scattering (in toluene, λ =633 nm; angles=30—110 °C; four-concentration measurements; $c=6.3\times10^{-3}$ —2.5×10⁻⁴ g ml⁻¹). The refractive index increment (dn/dc) value of poly(1-NP) was 0.184 ml g⁻¹.

Measurements of the IR, NMR, and UV-visible spectra, thermogravimetric analysis (TGA), gas permeation, etc. were carried out in the same manner as described

before.⁵⁾ The analytical and spectral data of the polymer (sample: Table 1, NbCl₅–n-Bu₄Sn) are as follows: Calcd for (C₁₃H₁₀) $_n$: C, 93.92; H, 6.08 %. Found: C, 93.35; H, 6.03%. IR (KBr) 2855 (s), 2718 (s), 2413 (m), 1806 (m), 1727 (m), 1622 (m), 1592 (m), 1576 (m), 1441 (s), 1368 (s), 1084 (s), and 858 (s) cm⁻¹. ¹H NMR (CDCl₃) δ =8.3—5.8 (olefinic, naphthyl) and 2.6—1.7 (Me). ¹³C NMR (CDCl₃) δ =150—115 (olefinic, naphthyl) and 27—17 (Me).

Results and Discussion

Polymerization by Nb and Ta Catalysts. can be seen in Table 1, a polymer was obtained in good yield even with NbCl_5 alone. Polymer degradation, however, occurred in this system, as shown below. When n-Bu₄Sn, Ph₄Sn, and Et₃SiH were used as cocatalysts, polymers were quantitatively obtained. These results are similar to those of 1-PP.²⁾ The formed polymers dissolved in toluene and CHCl₃. The absolute $\overline{M}_{\rm w}$ values determined by light scattering reached 24×10^4 — 35×10^4 . The relative $\overline{M}_{\rm w}$ by GPC versus polystyrene standards were $18 \times 10^4 - 26 \times 10^4$, smaller than the values by light scattering. This should be because the present polymer takes a less expanded conformation than dose polystyrene, due to the high molecular weight of the repeat unit and/or the large difference in the bulkiness of the two pendant groups. Since the $\overline{M}_{\mathbf{w}}$ values determined by GPC and light scattering were. however, not very different, a more facile GPC method was employed in additional experiments (cf. Figs. 1, 2, and 3 and Table 2).

When TaCl₅-based catalysts were used, although the monomer conversions were high, the yields of methanolinsoluble polymer were much lower than those with the NbCl₅-based counterparts (Table 1). Such tendencies have also been observed in the polymerization of 1-phenyl-1-alkynes and internal alkynes,^{1,5)} whereas diphenyl-

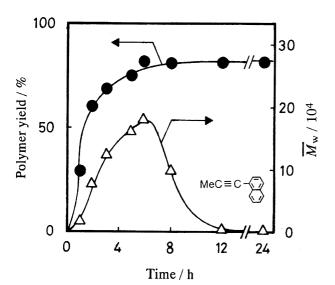


Fig. 1. Time profile of the polymerization of 1-NP by NbCl₅ (in toluene, 80 °C, [M]₀=0.50 M, [NbCl₅]=10 mM; $\overline{M}_{\rm w}$ by GPC).

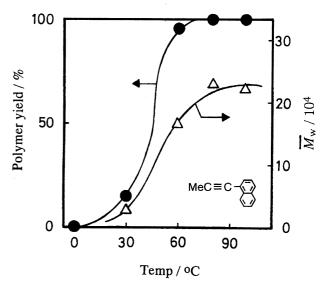


Fig. 2. Effect of temperature on the polymerization of 1-NP by NbCl₅-n-Bu₄Sn (in toluene, 6 h, [M]₀= 0.50 M, [NbCl₅]=10 mM, [n-Bu₄Sn]=20 mM; $\overline{M}_{\rm w}$ by GPC).

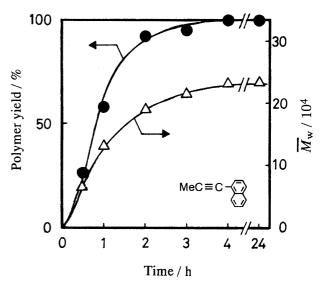


Fig. 3. Time profile of the polymerization of 1-NP by NbCl₅-n-Bu₄Sn (in toluene, 80 °C, $[M]_0$ =0.50 M, $[NbCl_5]$ =10 mM, [n-Bu₄Sn]=20 mM; \overline{M}_w by GPC).

acetylenes polymerize with TaCl₅-based catalyst and not with those based on NbCl₅.^{6,7)} The methanol-soluble products are thought to be cyclotrimers (mixtures of 1,3,5- and 1,2,4-isomers) according to a single GPC peak and ¹H NMR data [δ =8.4—6.8 (aromatic), δ =2.4—1.2 (methyl)].

Though 1-PP polymerizes in good yields with NbCl₅ or TaCl₅ alone, the molecular weight of the polymer decreases after complete consumption of the monomer. ¹⁾ It was thus examined how the naphthyl group would affect this phenomenon. The monomer conversion reached 100% with NbCl₅ alone after 6 h, and the polymer was obtained in over 80% yields (Fig. 1). The $\overline{M}_{\rm w}$ of the polymer was 18×10^4 at that time; thereafter, the

Cocatalyst	Monomer	$\operatorname{Polymer}^{\operatorname{b})}$				
Cocatalyst	$\mathrm{convn}/\%$	Yield/%	$ar{M}_{ m w}/10^3$		$ar{M}_{ m n}/10^3$	
			LS ^{c)}	GPC	GPC	
		NbCl ₅ -cocatalyst				
None	100	82	250	180	100	
$n ext{-}\mathrm{Bu_4Sn}$	100	100	300	230	100	
Ph_4Sn	100	100	240	200	110	
$\mathrm{Et_{3}SiH}$	100	100	350	260	130	
Ph_3SiH	100	93		11	4.5	
Ph_3Sb	100	99		22	8.4	
Ph_3Bi	100	96		78	51	
		$TaCl_5$ -cocatalyst				
None	100	27	-	26	17	
$n ext{-}\mathrm{Bu_4Sn}$	95	15	-	69	42	
Ph_4Sn	100	23		230	110	
$\mathrm{Et_{3}SiH}$	100	18		110	67	
Ph_3SiH	92	29	-	140	74	
Ph_3Sb	24	15		220	89	
Ph ₃ Bi	93	25	-	300	110	

Table 1. Polymerization of 1-NP by Various Catalysts^{a)}

a) Polymerized in toluene at 80 °C for 6 h; $[M]_o=0.50$ M, [Cat]=10 mM, [Cocat]=20 mM. b) Methanol-insoluble product. c) Light scattering.

Table 2. Solvent Effects on the Polymerization of 1-NP by $NbCl_5-n$ -Bu₄Sn $(1:2)^{a}$

Solvent	Monomer		Polymer ^{b)}	
	$\operatorname{convn}/\%$	Yield/%	$ar{M}_{ m w}/10^{3 m c)}$	$ar{M}_{ m n}/10^{3 m c)}$
Toluene	100	100	230	100
Heptane	67	63	220	110
PhOMe	100	81	140	73
CCl_4	65	58	51	22
$(\mathrm{CH_2Cl})_2$	100	86	57	25

a) Polymerized at 80 °C for 6 h; $[M]_0 = 0.50$ M, $[NbCl_5] = 10$ mM, $[n\text{-Bu}_4Sn] = 20$ mM. b) Methanolinsoluble product. c) Determined by GPC.

 $\overline{M}_{\rm w}$ sharply decreased to become no more than several thousand after 24 h. Thus, despite the presence of bulky 1-naphthyl groups, poly(1-NP) suffers degradation during polymerization like poly(1-PP).

Polymerization by $NbCl_5-n-Bu_4Sn$ (1:2). The polymerization of 1-NP was studied in more detail by using the $NbCl_5-n-Bu_4Sn$ (1:2) catalyst, which proved to provide a high-molecular-weight polymer.

Solvent effects on the polymerization were studied (Table 2). High-molecular-weight polymers were obtained in good yields not only in the hydrocarbon-based solvents (toluene, heptane), but also in anisole. Though the polymerization also proceeded in chlorine-containing solvents [CCl₄ and (CH₂Cl)₂], the molecular weights of the polymers were lower. Regarding the polymerization temperature, polymers were obtained at 30 °C and above (Fig. 2). Both the yield and the molecular weight of the polymer increased with increasing temperature to reach 100% and ca. 25×10^4 (GPC), respectively, at 80—100 °C.

Under the conditions given in Fig. 3, the polymerization of 1-NP was completed in 4 h to give a methanol-insoluble polymer quantitatively. The reaction was slower than that of 1-PP, which is consumed within 30 min under the same conditions. The $\overline{M}_{\mathbf{w}}$ of the polymer increased approximately in proportion to the polymer yield to finally reach 23×10^4 . This is indicative of the presence of a long-lived propagating species. Such tendencies have also been observed in the polymerization of 1-phenyl-1-alkynes by NbCl₅ and TaCl₅ catalysts.¹⁾ The polymer molecular weights did not decrease, even though the polymerization systems were left for over 24 h, indicating that no polymer degradation occurred in the presence of n-Bu₄Sn as a cocatalyst (cf. Fig. 1). It has been confirmed in the polymerization of 1-PP that not only n-Bu₄Sn, but also the other cocatalysts as shown in Table 1, are effective in prohibiting polymer degradation.²⁾ A possible reason for this phenomenon is that a moiety of the cocatalysts is present as a ligand of the propagating species to sterically prevent polymer degradation due to secondary metathesis.

To clarify the influence of the 1-naphthyl group on the reactivity, copolymerization of 1-NP with 1-PP was carried out with the $NbCl_5-n$ -Bu₄Sn catalyst in toluene. As can be seen in Fig. 4, 1-PP was consumed faster than 1-NP. This seems to be due to the steric effect of the 1-naphthyl group.

Polymer Structure. The analytical values of poly(1-NP) agreed well with the calulated values (see the Experimental). The IR spectrum showed no absorption due to the C \equiv C stretching observed at 2200 cm $^{-1}$ in the monomer. Absorption due to C=C stretching was observed at around 1650 cm $^{-1}$ as a shoulder. The 1 H NMR spectrum exhibited signals due to the olefinic

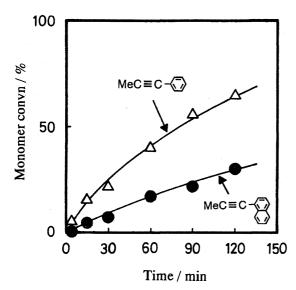


Fig. 4. Copolymerization of 1-NP with 1-PP by NbCl-n-Bu₄Sn (in toluene, 80 °C, $[M_1]_0$ = $[M_2]_0$ =0.25 M, $[NbCl_5]$ =10 mM, [n-Bu₄Sn]=20 mM).

and aromatic protons (δ =8.3—5.8) as well as the methyl protons (δ =2.6—1.7), but no other unidentifiable signals. The ¹³C NMR spectrum of the monomer showed two peaks due to the acetylenic carbons at δ =90.7 and 77.8, which disappeared in the polymer. Signals due to the sp² carbons of the main chain and the 1-naphthyl group (δ =150—115) and those of methylene carbons (δ =27—17) were observed in the polymer.

As can be seen in Fig. 5, poly(1-NP) showed an absorption maximum ($\varepsilon_{\rm max}$ 3700 M⁻¹ cm⁻¹) at 290 nm in the UV-visible spectrum, which is similar to that of poly(1-PP). The cutoff wavelength is ca. 420 nm, which is slightly longer than that of poly(1-PP). These spectral data are consistent with a main-chain structure comprising alternating double bonds.

General Properties of the Polymer. The present polymer is a pale-yellow solid (cf. poly(1-

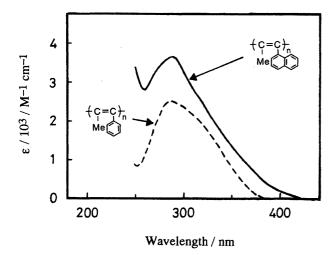


Fig. 5. UV-visible spectra of poly(1-aryl-1-propyne)s (measured in tetrahydrofuran).

PP) colorless). It completely dissolved in toluene, CCl_4 , $CHCl_3$, $(CH_2Cl)_2$, tetrahydrofuran, 1,4-dioxane, anisole, methyl benzoate, and acetophenone; partly dissolved in N,N-dimethylformamide; but did not dissolve at all in hexane, cyclohexane, diethyl ether, and acetone. These solubility properties are practically the same as those of poly(1-PP). However, although poly-(1-PP) is soluble in cyclohexane, the present polymer is not. A free-standing film could be fabricated by casting poly(1-NP) from a toluene solution.

The onset temperature of the weight loss in air for poly(1-NP) is 340 °C, whereas that for poly(1-PP) is 280 °C (Fig. 6). Thus, the introduction of a naphthyl group in place of the phenyl group of 1-PP considerably improves the thermal stability. The mechanical and thermal properties of poly(1-NP) along with those of poly(1-PP) are summarized in Table 3. According to tensile tests at 25 °C, the present polymer is even less ductile than poly(1-PP), which is due to the naphthyl group. The glass transition temperature was higher than 200 °C according to a dynamic viscoelastic measurement.

Gas Permeability of the Polymer. The oxy-

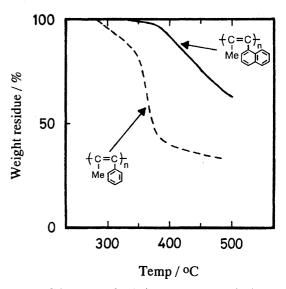


Fig. 6. TGA curves of poly(1-aryl-1-propyne)s (in air, heating rate 10 °C min⁻¹).

Table 3. Mechanical and Thermal Properties of Poly-(1-aryl-1-propyne)s^{a)}

	Poly(1-NP)	Poly(1-PP) ^{b)}
Young's modulus/MPa	1700	2500
Tensile strength/MPa	39	93
Elongation at break/%	2.6	4.3
$T_{\rm g}^{\rm c)}/{\rm ^{\circ}C}$	>200	ca. 200
$T_{\rm s}^{\rm d)}/^{\circ}{ m C}$	338	272

a) Tensile properties were examined at 25 °C. b) Data from Ref. 1. c) Glass transition temperatures $(T_{\rm g})$ were estimated by dynamic viscoelasticity. d) Softening temperature.

Table 4. Gas Permeability of Poly(1-aryl-1-propyne)s

Polymer	$P^{\mathrm{a})}$						
1 Olymer	He	H_2	O_2	N_2	CO_2	$\overline{\mathrm{CH_4}}$	$P_{\mathrm{O_2}}/P_{\mathrm{N_2}}$
Poly(1-NP)	110	220	80	26	250	24	3.1
Poly(1-PP) ^{b)}	30	43	6.3	3 2.5	2° 25°	2.8	2.9

- a) Gas permeability coefficients at 25 °C in the units of $1\times10^{-10}~\rm cm^3~(STP)cm/(cm^2\cdot s\cdot cm~Hg)$ (=1 barrer).
- b) Data from Ref. 3.

gen permeability coefficient $(P_{\rm O_2})$ of poly(1-NP) is 80 barrers (Table 4), ca. 12-times as large as that of poly(1-PP). It is thus noteworthy that the replacement of phenyl by 1-naphthyl results in a considerable enhancement of $P_{\rm O_2}$. The $P_{\rm O_2}$ value of the present polymer is three-times larger than that of natural rubber (23 barrers), and is fairly large among those of various substituted polyacetylenes.³⁾ The separation factor between oxygen and nitrogen $(P_{\rm O_2}/P_{\rm N_2})$ is 3.1. It is noted that poly(1-NP) is 3—13 times more permeable than is poly(1-PP) to any gas.

Comparison with 1-PP. i) In the polymerization of 1-NP by NbCl₅ and TaCl₅ alone, the molecular weight of the polymer decreases after the monomer has been completely consumed. In contrast, polymer degradation is suppressed when n-Bu₄Sn is added as a cocatalyst. These are the same tendencies as for 1-PP. ii) The $\overline{M}_{\rm w}$ of the poly(1-NP) obtained with NbCl₅-n-Bu₄Sn is 23×10^4 according to GPC, which is somewhat lower than that (37×10^4) of poly(1-PP). This seems to be due to the weaker coordinating ability of the monomer

to the propagating species, which is attributable to the steric effect of the 1-naphthyl group. iii) Despite the presence of bulky naphthyl groups, the present polymer is soluble in various organic solvents, as is poly(1-PP). Further, poly(1-NP) is thermally more stable than poly-(1-PP). This is explained in terms of the fact that bulky naphthyl groups protect the main chain from oxidative degradation. iv) Poly(1-PP) is one of the substituted polyacetylenes that show the lowest gas permeability.³⁾ The oxygen permeability coefficient of poly(1-NP) is one order of magnitude larger than that of poly(1-PP). This suggests that sterically crowded poly(1-NP) has more molecular-scale voids that does poly(1-PP).

References

- 1) T. Masuda, T. Takahashi, and T. Higashimura, *Macromolecules*, **18**, 311 (1985).
- 2) T. Masuda, A. Niki, E. Isobe, and T. Higashimura, *Macromolecules*, **18**, 2109 (1985).
- 3) T. Masuda, Y. Iguchi, B.-Z. Tang, and T. Higashimura, *Polymer*, **29**, 2041 (1988).
- 4) D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, "Purification of Laboratory Chemicals," 2nd ed, Pergamon Press, Oxford (1980).
- 5) T. Masuda, T. Takahashi, A. Niki, and T. Higashimura, J. Polym. Sci., Part A: Polym. Chem., 24, 809 (1986).
- 6) H. Kouzai, T. Masuda, and T. Higashimura, J. Polym, Sci., Part A: Polym. Chem., 32, 2523 (1994).
- 7) A. Niki, T. Masuda, and T. Higashimura, J. Polym. Sci., Part A: Polym. Chem., 25, 1553 (1987).